ST MARY'S COLLEGE ## **FORM UPPER 6** SUBJECT: PHYSICS #### COURSE OUTLINE 2022-2023 ### Term 1 | Proposed
Date/Week | Unit/Section | Topic | Modules | |-----------------------|---|--------------------------|---| | Week 1-2 | Unit 2 Module 1
Electricity &
Magnetism | Electrical
Quantities | 1.1 Charge, Q = It 1.2 Coulomb definition 1.3 Volt definition 1.4 Electrical Energy, W = QV 1.5 Potential Difference, V = IR 1.6 Electrical Power, P = IV = I²R - V²/R 1.7 Resistivity definition and use: R = ρL/A 1.8 Distinguish between e.m.f. and p.d. 1.9 Drift Velocity, v 1.10 Derive and use: I = n A v e 2.10 I-V Characteristics: metal conductors; semi-conductors; lamp LABORATORY INVESTIGATION 1: I-V Characteristics | | Week 3-4 | Unit 2 Module 1
Electricity &
Magnetism | Electrical
Circuits | 2.1 Thermistors: R-T characteristics 2.2 Electrical sources: primary; secondary; solar; generator; Internal resistance; e.m.f.; p.d.; load; Solve problems 2.3 Circuit diagrams 2.4 Kirchhoff's Laws: 1st - Principle of conservation of Charge; 2nd - Principle of conservation of energy 2.5 Derive & use formula for resistors in series 2.6 Derive & use formula for resistors in parallel 2.7 Potential Divider – fixed & variable p.d. sources 2.8 Wheatstone Bridge – comparing resistances LABORATORY INVESTIGATION 2: Internal Resistance and EMF of a dry cell LABORATORY INVESTIGATION 3: Resistivity | | Week 5 | Unit 2 Module 1
Electricity &
Magnetism | Electric
Fields | 3.1 Electrical Conductors & Insulators – electron model 3.2 Applications of electrostatic phenomena 3.3 Hazards of charging by friction 3.4 Lightning rods 3.5 Coulomb's Law : F = Q₁Q₂/4πε₀r² 3.6 Field Strength : E = Q/4πε₀r² 3.7 Electric Field between parallel plates : E = V/d 3.8 Force on charged particle in uniform electric field : F = EQ LABORATORY INVESTIGATION 4: Wheatstone Bridge | | Week 6 | Unit 2 Module 1
Electricity &
Magnetism | Capacitors | 4.1 The Farad 4.2 C = Q/V 4.3 C = εA/d 4.4 Capacitors in series & parallel 4.5 Energy Stored in a Capacitor 4.6 Equations for capacitor discharge 4.7 Graphs for charging & discharging LABORATORY INVESTIGATION 5 : Capacitor Discharge | | Week 7 - 8 | Linit 2 Martinia 4 | Magasti- | E 1 Floy density and Table | |------------|---------------------------|--------------------------|--| | | Unit 2 Module 1 | Magnetic | 5.1 Flux density and Tesla | | | Electricity & | Fields | 5.2 Magnetic flux patterns of wire, coil & solenoid | | | Magnetism | | 5.3 Expressions for magnetic flux | | | | | 6.1 Fleming's Left Hand Rule 6.2 F = B L sinθ | | | | Magnetic
Forces | 6.3 Current Balance | | | | Forces | 6.4 Direction of force on charge moving in magnetic field | | | | | 6.5 F = B Q v sinθ | | | | | 6.6 Charged particles moving in perpendicular B & E fields | | | | | 6.7 Effect of Soft Iron Core on magnetic field due to solenoid | | | | | 6.8 Principle of electromagnet & applications | | | | | 6.9 Forces between current carrying conductors | | | | | 6.10 Hall Effect | | | | | 6.11 Hall Probe to measure flux density | | | | | LABORATORY INVESTIGATION 6: Magnetic Field Pattern | | | | | LABORATORY INVESTIGATION 7: Hall Probe | | Week 9 | Unit 2 Module 1 | Electro- | 7.1 Magnetic Flux φ = B A | | | Electricity & | Magnetic | 7.2 The Weber | | | Magnetism | Induction | 7.3 Induced e.m.f. & change in flux linkage | | | | | 7.4 Faraday's Law of Electromagnetic Induction | | | | | 7.5 Lenz's Law to determine direction of induced e.m.f. | | | | | 7.6 Lenz's Law and Principle of Conservation of Energy | | | | | 7.7 Applications of electromagnetic induction | | | | | LABORATORY INVESTIGATION 8 : Electromagnetic | | | | | Deflection. | | | | | LABORATORY INVESTIGATION 9: Oscillating Magnet. | | Week 10 | Unit 2 Module 2 | Alternating | 1.1 Frequency; Peak value; root mean square value of A.C. | | | A.C. Theory & Electronics | Currents | 1.2 A.C. equation: $X = Xo \sin \omega t$ | | | | | 1.3 Peak value = $\sqrt{2}$ [r.m.s. value]: $I_{pk} = \sqrt{2}$ $I_{r.m.s}$ | | | | | | | | | | 1.4 Uses of A.C. & high voltages - electrical transmission | | | | | 2.1 Semiconductors : p-type & n-type materials | | | | P-N
Junction
Diode | 2.2 Depletion layer at a p-n junction | | | | | 2.3 Forward & reverse biased current flow in a p-n diode | | | | | | | | | | 2.4 I-V characteristics of the p-n junction diode | | | | | 2.4 I-V characteristics of the p-n junction diode2.5 Transistor as two p-n junction diodes | | | | | 1 | | | | | 2.5 Transistor as two p-n junction diodes2.6 Diodes for half wave rectification2.7 4 diodes bridge rectifier for full wave rectification | | | | | 2.5 Transistor as two p-n junction diodes2.6 Diodes for half wave rectification | | | | | 2.5 Transistor as two p-n junction diodes 2.6 Diodes for half wave rectification 2.7 4 diodes bridge rectifier for full wave rectification 2.8 Full wave and Half wave rectification graphs 2.9 Capacitor smoothing of rectified A.C. & time constant RC | | | | | 2.5 Transistor as two p-n junction diodes 2.6 Diodes for half wave rectification 2.7 4 diodes bridge rectifier for full wave rectification 2.8 Full wave and Half wave rectification graphs 2.9 Capacitor smoothing of rectified A.C. & time constant RC 3.1 Electronic Input Devices: LDR, Thermistor, Microphone | | | | | 2.5 Transistor as two p-n junction diodes 2.6 Diodes for half wave rectification 2.7 4 diodes bridge rectifier for full wave rectification 2.8 Full wave and Half wave rectification graphs 2.9 Capacitor smoothing of rectified A.C. & time constant RC 3.1 Electronic Input Devices: LDR, Thermistor, Microphone 3.2 Electronic Output Devices: LED; Buzzer; Relay | | | | | 2.5 Transistor as two p-n junction diodes 2.6 Diodes for half wave rectification 2.7 4 diodes bridge rectifier for full wave rectification 2.8 Full wave and Half wave rectification graphs 2.9 Capacitor smoothing of rectified A.C. & time constant RC 3.1 Electronic Input Devices: LDR, Thermistor, Microphone 3.2 Electronic Output Devices: LED; Buzzer; Relay LABORATORY INVESTIGATION 10: A.C. & Rectification | | Week 11 | Unit 2 Module 2 | Operational | 2.5 Transistor as two p-n junction diodes 2.6 Diodes for half wave rectification 2.7 4 diodes bridge rectifier for full wave rectification 2.8 Full wave and Half wave rectification graphs 2.9 Capacitor smoothing of rectified A.C. & time constant RC 3.1 Electronic Input Devices: LDR, Thermistor, Microphone 3.2 Electronic Output Devices: LED; Buzzer; Relay LABORATORY INVESTIGATION 10: A.C. & Rectification 4.1 Properties of the IDEAL Operational Amplifier | | Week 11 | A.C. Theory & | | 2.5 Transistor as two p-n junction diodes 2.6 Diodes for half wave rectification 2.7 4 diodes bridge rectifier for full wave rectification 2.8 Full wave and Half wave rectification graphs 2.9 Capacitor smoothing of rectified A.C. & time constant RC 3.1 Electronic Input Devices: LDR, Thermistor, Microphone 3.2 Electronic Output Devices: LED; Buzzer; Relay LABORATORY INVESTIGATION 10: A.C. & Rectification 4.1 Properties of the IDEAL Operational Amplifier 4.2 Properties of the REAL Operational Amplifier | | Week 11 | | Operational | 2.5 Transistor as two p-n junction diodes 2.6 Diodes for half wave rectification 2.7 4 diodes bridge rectifier for full wave rectification 2.8 Full wave and Half wave rectification graphs 2.9 Capacitor smoothing of rectified A.C. & time constant RC 3.1 Electronic Input Devices: LDR, Thermistor, Microphone 3.2 Electronic Output Devices: LED; Buzzer; Relay LABORATORY INVESTIGATION 10: A.C. & Rectification 4.1 Properties of the IDEAL Operational Amplifier 4.2 Properties of the REAL Operational Amplifier 4.3 OP-AMP as a comparator | | Week 11 | A.C. Theory & | Operational | 2.5 Transistor as two p-n junction diodes 2.6 Diodes for half wave rectification 2.7 4 diodes bridge rectifier for full wave rectification 2.8 Full wave and Half wave rectification graphs 2.9 Capacitor smoothing of rectified A.C. & time constant RC 3.1 Electronic Input Devices: LDR, Thermistor, Microphone 3.2 Electronic Output Devices: LED; Buzzer; Relay LABORATORY INVESTIGATION 10: A.C. & Rectification 4.1 Properties of the IDEAL Operational Amplifier 4.2 Properties of the REAL Operational Amplifier 4.3 OP-AMP as a comparator 4.4 Saturation and Clipping in OP-AMPs: Vout ≤ Vsupply | | Week 11 | A.C. Theory & | Operational | 2.5 Transistor as two p-n junction diodes 2.6 Diodes for half wave rectification 2.7 4 diodes bridge rectifier for full wave rectification 2.8 Full wave and Half wave rectification graphs 2.9 Capacitor smoothing of rectified A.C. & time constant RC 3.1 Electronic Input Devices: LDR, Thermistor, Microphone 3.2 Electronic Output Devices: LED; Buzzer; Relay LABORATORY INVESTIGATION 10: A.C. & Rectification 4.1 Properties of the IDEAL Operational Amplifier 4.2 Properties of the REAL Operational Amplifier 4.3 OP-AMP as a comparator 4.4 Saturation and Clipping in OP-AMPs: Vout ≤ Vsupply 4.5 Gain and Bandwidth of an OP-AMP | | Week 11 | A.C. Theory & | Operational | 2.5 Transistor as two p-n junction diodes 2.6 Diodes for half wave rectification 2.7 4 diodes bridge rectifier for full wave rectification 2.8 Full wave and Half wave rectification graphs 2.9 Capacitor smoothing of rectified A.C. & time constant RC 3.1 Electronic Input Devices: LDR, Thermistor, Microphone 3.2 Electronic Output Devices: LED; Buzzer; Relay LABORATORY INVESTIGATION 10: A.C. & Rectification 4.1 Properties of the IDEAL Operational Amplifier 4.2 Properties of the REAL Operational Amplifier 4.3 OP-AMP as a comparator 4.4 Saturation and Clipping in OP-AMPs: Vout ≤ Vsupply 4.5 Gain and Bandwidth of an OP-AMP 4.6 Gain-Frequency curve of a typical OP-AMP | | Week 11 | A.C. Theory & | Operational | 2.5 Transistor as two p-n junction diodes 2.6 Diodes for half wave rectification 2.7 4 diodes bridge rectifier for full wave rectification 2.8 Full wave and Half wave rectification graphs 2.9 Capacitor smoothing of rectified A.C. & time constant RC 3.1 Electronic Input Devices: LDR, Thermistor, Microphone 3.2 Electronic Output Devices: LED; Buzzer; Relay LABORATORY INVESTIGATION 10: A.C. & Rectification 4.1 Properties of the IDEAL Operational Amplifier 4.2 Properties of the REAL Operational Amplifier 4.3 OP-AMP as a comparator 4.4 Saturation and Clipping in OP-AMPs: Vout ≤ Vsupply 4.5 Gain and Bandwidth of an OP-AMP | | | 4.10 GAIN of inverting and non-inverting amplifiers 4.11 Negative feedback – effect on gain and bandwidth 4.12 Single input amplifier circuits 4.13 High impedance of non-inverting amplifier 4.14 Inverting amplifier as a Summing Amplifier 4.15 Summing Amplifier circuits 4.16 Op-AMP as a Voltage Follower 4.17 Analysis of OP-AMP circuits 4.18 Timing Diagrams to analyze response of amplifier circuits | |--------|---| | | LABORATORY INVESTIGATION 11: OP - AMPs | | Unit 2 | PAST PAPER REVISION | # **ST MARY'S COLLEGE** # **FORM UPPER 6** **SUBJECT: PHYSICS** ### COURSE OUTLINE 2022-2023 #### Term 2 | Proposed
Date/Week | Unit/Section | Topic | Modules | |-----------------------|---|---|--| | Week1-2 | Unit 2 Module 2
A.C. Theory &
Electronics | Logic
Gates | 5.1 Function of NOT; AND; OR; NAND; NOR; EXOR; EXNOR 5.2 Truth Tables of logic gates 5.3 Re-design logic gates using only NOR or only NAND gates 5.4 Analyze logic circuits to perform control functions 5.5 Truth tables for combination of logic gates 5.6 Timing diagrams to represent response of digital circuits 5.7 Half Adder – construction and operation 5.8 Full Adder: using 2 half adders and an OR gate 5.9 FLIP-FLOP: using 2 NOR or 2 NAND 5.10 Operation of a triggered bistable 5.11 3-Bit binary counter using Triggered bistables [T-flip-flops] 5.12 Application of digital systems in home and industry LABORATORY INVESTIGATION 12: LOGIC Gates | | Week 3-4 | Unit 2 Module 3
Atomic &
Nuclear Physics | Particulate
Nature of
Electro-
magnetic
Radiation | 1.1 E = hf 1.2 Photoelectric emission 1.3 Problems of Classical Physics and photoelectric effect 1.4 Photon model to explain classical paradoxes 1.5 Work function; threshold frequency; cut-off wavelength; stopping potential; 1.6 E = hf = ½ m v²; E = hf = + eV 1.7 Electron-volt: unit of energy 1.8 Photoelectric effect as evidence for particle nature of EMR 1.9 X-ray production 1.10 Line and continuous X-ray spectra 1.11 Attenuation of X-rays: I = I₀ e ¬µX 1.12 X-rays in radiotherapy and imaging in medicine 1.13 Line spectra and discrete energy levels in isolated atoms 1.14 ΔE = hf = E₂ - E₁ 1.15 Absorption and Emission line spectra 1.16 Wave-particle nature of matter 1.17 Electron diffraction – evidence of wave nature of particles 1.18 Interference & diffraction: wave nature of EMR 1.19 de Broglie wavelength: λ = h/p LABORATORY INVESTIGATION 13: Photoelectric Effect | | Week 5 | Unit 2 Module 3
Atomic &
Nuclear Physics | Atomic
Structure | 2.1
2.2
2.3
2.4
2.5
2.6 | Geiger-Marsden α -particle scattering experiment Evidence for nuclear model of the atom $\mathbf{A} = \mathbf{Z} - \mathbf{N}$ Atomic number = Mass number – neutron number Isotopes Standard notation for representing a nuclide : ${}^Z_A \mathbf{X}$, ${}^{14}_{7} \mathbf{N}$ Millikan's Oil Drop experiment – experimental design Evidence for quantization of charge from Millikan's expt. | |--------|--|----------------------|--|--| | Week 6 | Unit 2 Module 3
Atomic &
Nuclear Physics | Nuclear
Reactions | 3.2 | Definition of mass defect and binding energy Calculation of mass defect & binding energy E = m c²: energy release in fission and fusion Atomic mass unit (u) as a unit of energy Graph of binding energy per nucleon vs nucleon number Binding energy per nucleon re nuclear fusion & fission Conservation of nucleon number, proton number, energy | | | | | (mass) and charge in nuclear processes 3.8 Nuclear reactions in the form : ${}^1_1H + {}^2_1H = {}^3_2He$ | |----------|---|---------------------------------|--| | Week 7-8 | Unit 2 Module 3
Atomic &
Nuclear Physics | Radioactivity | 4.1 Relate radioactivity and nuclear instability 4.2 Spontaneous and random nature of radioactive decay 4.3 Origins and hazards of background radiation 4.4 Experiments to distinguish between α, β, γ emissions 4.5 Write and interpret equations for radioactive decay 4.6 Environmental hazards of radioactive emissions – nuclear biohazards in the Caribbean environment 4.7 Safety precautions for handling & disposal of radioactive material 4.8 Activity, decay constant, half-life and relationship: A = λN 4.9 Law of radioactive decay: dN/dt - N and N = No e^{-t} 4.10 Solve problems using: T1/2 = 4.11 experiment to determine the half life of a radioactive isotope with a short half life 4.12 Radioisotopes as tracers for carbon dating & radiotherapy 4.13 Operation of simple radioactivity detectors: GM tube; cloud chamber; spark counter LABORATORY INVESTIGATION 10: Radioactivity | | Week 9 | Unit 2 Module 1
Electricity &
Magnetism | Electricity &
Magnetism | PAST PAPER REVISION | | Week 10 | Unit 2 Module 2
A.C. Theory &
Electronics | A.C. Theory
&
Electronics | PAST PAPER REVISION | | Week 11 | Unit 2 Module 3
Atomic &
Nuclear Physics | Atomic &
Nuclear
Physics | PAST PAPER REVISION | | Week 12 | Unit 2 | ALL topics | PAST PAPER REVISION | | Week 13 | Unit 2 | ALL Topics | PAST PAPER REVISION | # **ST MARY'S COLLEGE** # **FORM UPPER 6** **SUBJECT: PHYSICS** ### COURSE OUTLINE 2014-2015 #### Term 3 | Proposed
Date/Week | Unit/Section | Topic | Modules | |-----------------------|---|---------------------------------|---------------------| | Week 1 | Unit 2 Module 1
Electricity &
Magnetism | Electricity & Magnetism | PAST PAPER REVISION | | Week 2 | Unit 2 Module 2
A.C. Theory &
Electronics | A.C. Theory
&
Electronics | PAST PAPER REVISION | | Week 3 | Unit 2 Module 3
Atomic &
Nuclear Physics | Atomic &
Nuclear
Physics | PAST PAPER REVISION | | Week 4 | Unit 2 | ALL topics | PAST PAPER REVISION |